- Copy in to your "Dividing Radicals" Tab
- Complete Practice Problems (in your packet) with your elbow partner
- Turn this paper back in to the yellow bin

Rationalizing Binomial Denominators

Given $\frac{\sqrt{5}}{3-\sqrt{2}}$, we cannot simply multiply by the radical. Look what happens:

$$
\frac{\sqrt{5}}{3-\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{5} \cdot \sqrt{2}}{(3-\sqrt{2}) \cdot \sqrt{2}}=\frac{\sqrt{10}}{3 \sqrt{2}-\sqrt{4}}=\frac{\sqrt{10}}{3 \sqrt{2}-2}
$$

The radical is still in the denominator - it is still irrational!!
When there is a binomial in the denominator that we need to rationalize, we must multiply the top and bottom by the CONJUGATE.

Conjugate: Binomials with opposite signs
Ex: $3 \sqrt{5}+2 \sqrt{2}$ and $3 \sqrt{5}-2 \sqrt{2}$ are conjugates
Let's go back to $\frac{\sqrt{5}}{3-\sqrt{2}}$

$$
\frac{\sqrt{5}}{3-\sqrt{2}} \cdot \frac{3+\sqrt{2}}{3+\sqrt{2}}=\frac{\sqrt{5} \cdot(3+\sqrt{2})}{(3-\sqrt{2}) \cdot(3+\sqrt{2})}=\frac{\sqrt{10}}{3 \sqrt{2}-\sqrt{4}}=\frac{\sqrt{10}}{3 \sqrt{2}-2}
$$

	$\mathbf{3}$	$-\sqrt{2}$
$\mathbf{3}$	9	$3-\sqrt{2}$
$\sqrt{2}$	$3+\sqrt{2}$	$-\sqrt{4}$

$$
=9+3 \sqrt{2}-3 \sqrt{2}-2=9-2=7
$$

Another example:

$$
\begin{aligned}
& \frac{3 \sqrt{6}-4 \sqrt{3}}{4 \sqrt{6}-2 \sqrt{3}} \cdot \frac{4 \sqrt{6}+2 \sqrt{3}}{4 \sqrt{6}+2 \sqrt{3}}=\frac{12 \sqrt{36}+6 \sqrt{18}-16 \sqrt{18}-8 \sqrt{9}}{16 \sqrt{36}+8 \sqrt{18}-8 \sqrt{18}-4 \sqrt{9}}=\frac{12 \sqrt{36}-10 \sqrt{18}-8 \sqrt{9}}{16 \sqrt{36}-4 \sqrt{9}} \\
& =\frac{12(6)-10(3 \sqrt{2})-8(3)}{16(6)-4(3)}=\frac{72-30 \sqrt{2}-24}{96-12}=\frac{48-30 \sqrt{2}}{84}=\frac{8-5 \sqrt{2}}{14}
\end{aligned}
$$

Practice:

1. $\frac{3}{4+4 \sqrt{5}}$
2. $\frac{5}{-5-3 \sqrt{3}}$
3. $\frac{3-4 \sqrt{3}}{4 \sqrt{5}+3 \sqrt{2}}$
4. $\frac{\sqrt{5}+3}{4-\sqrt{5}}$
