3. A rocket is launched from atop a 101 - foot cliff with an initial velocity of $116 \mathrm{ft} / \mathrm{s}$.
a. Substitute the values into the vertical motion formula $h(t)=-16 t^{2}+v t+h_{0}$. Let $\mathrm{h}(\mathrm{t})=0$
b. Use the quadratic formula to find out how long the rocket will take to hit the ground after it is launched. Round to the nearest tenth of a second.
4. You and a friend are hiking in the mountains. You want to climb to a ledge that is 20 ft . above you. The height of the grappling hook you throw is given by the function $h(t)=-16 t^{2}-32 t+5$. What is the maximum height of the grappling hook? Can you throw it high enough to reach the ledge?
5. You are trying to dunk a basketball. You need to jump 2.5 ft . in the air to dunk the ball. The height that your feet are above the ground is given by the function $h(t)=-16 t^{2}+12 t$. What is the maximum height your feet will be above the ground? Will you be able to dunk the basketball?
6. A diver is standing on a platform 24 ft . above the pool. He jumps form the platform with an initi8al upward velocity of $8 \mathrm{ft} / \mathrm{s}$. Use the formula $h(t)=-16 t^{2}+v t+s$, where h is his height above the water, t is the time, v is his starting upward velocity, and s is his starting height. How long will it take for him to hit the water?
